There are many versions of any of these papers online. I do NOT maintain nor update papers on http://arxiv.org/a/shaska_t_1 or other websites. Be aware that arxiv versions are not, for the most cases, the correct, published versions. Please check (and cite) the published versions.

- A. Clingher, A. Malmendier, T. Shaska; Geometry of Prym varieties for special bielliptic curves of genus three and five, Pure and Applied Mathematics Quarterly, (to appear)
- A. Obus, T. Shaska; Superelliptic curves with many automorphisms and CM Jacobians, Math. Comp. 90 (2021), no. 332, 2951–2975.
- A. Clingher, A. Malmendier, T. Shaska, On isogenies among certain Abelian varieties, Michigan Mathematics Journal, 2021 (43 pages)
- A. Elezi, T. Shaska, Reduction of binary forms via the hyperbolic centroid, Lobachevskii J. Math. 42 (2021), no. 1, 84–95.
- L. Beshaj, J. Gutierrez, T. Shaska, Weighted greatest common divisors and weighted heights, J. Number Theory 213 (2020), 319–346.
- L. Beshaj, A. Elezi, T. Shaska, Isogenous components of Jacobian surfaces , Eur. J. Math. 6 (2020), no. 4, 1276–1302.
- A. Clingher, A. Malmendier, T. Shaska, Configurations of 6 lines and string dualities, Comm. Math. Phys. 371 (2019), no. 1, 159–196.
- A. Malmendier and T. Shaska; From hyperelliptic to superelliptic curves, Albanian J. Math. Vol. 13. (2019), No. 1. 107-200.
- Shuichi Otake, Tony Shaska; Some remarks on the non-real roots of polynomials, Cubo 20, (2018), no. 2. 67-93.
- A. Malmendier and T. Shaska, A universal genus-two curve from Siegel modular forms, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 13 (2017), 089, 17 pages
- A. Malmendier and T. Shaska, The Satake sextic in F-theory, Journal of Geometry and Physics, vol. 120, 2017, 290-305.
- T. Shaska and C. Shor, The q-Weierstrass points of genus 3 hyperelliptic curves with extra automorphisms, Comm. Algebra, 45 (2017), no. 5, 1879-1892.
- T. Shaska, Genus two curves with many elliptic subcovers, Comm. Algebra 44 (2016), no. 10, 4450–4466.
- T. Shaska and C. Shor, Theta functions and symmetric weight enumerators for codes over imaginary quadratic fields, Des. Codes Cryptogr., 76 (2015) no. 2, 217–235.
- T. Shaska, Some remarks on the hyperelliptic moduli of genus 3, Comm. Algebra 42 (2014), no. 9, 4110–4130.
- T. Shaska and F. Thompson, Bielliptic curves of genus 3 in the hyperelliptic moduli, Appl. Algebra Eng. Commun. Comput., 2013, 24 (5), 387-412.
- A. Elezi and T. Shaska, Quantum codes from superelliptic curves, Albanian J. Math. vol 5, (2011), no. 4, 175-191.
- L. Beshaj, V. Hoxha, T. Shaska, Superelliptic curves of level n and their invariants I , Albanian J. Math. Vol 5, Nr. 3, 2011.
- T. Shaska, C. Shor, S. Wijesiri, Codes, modular lattices, and corresponding theta functions, Finite Fields Appl., 16 (2010), no. 2, 75 -- 87.
- K. Magaard, T. Shaska, H. Voelklein, Genus 2 curves with degree 5 elliptic subcovers, Forum Math. 21 (2009), no. 3, 547–566.
- T. Shaska and V. Ustimenko, Applications of liner algebra to the theory of algebraic graphs of large girth, Linear Algebra and Appl. 430, (2009), no. 7. 1826-1837.
- T. Shaska and V. Ustimenko, On some applications of graphs to cryptography and turbocoding, Albanian J. Math. Vol 2, Nr. 3, 2008, 249-255.
- N. Pjero, M. Ramosaco, T. Shaska, Degree even coverings of elliptic curves by genus two curves, Albanian J. Math, vol. 2. Nr. 3, 2008, 241-248.
- R. Sanjeeva, T. Shaska, Determining equations of families of cyclic curves, Albanian J. Math. Vol 2, Nr. 3, 2008, 199-213.
- T. Shaska, S. Wijesiri, S. Wolf, L. Woodland, Degree four coverings of elliptic curves by genus two curves, Albanian J. Math. vol. 2. Nr. 4. 2008, 307-315.
- T. Shaska, S. Wijesiri, Codes over rings of size four, Hermitian lattices, and corresponding theta functions, Proc. Amer.Math. Soc., 136 (2008), no.3, 849-857.
- T. Shaska, Some open problems in computational algebraic geometry, Albanian J. Math, vol I, Nr. 4, 2007, 297-319.
- E. Previato, T. Shaska, S. Wijesiri, Thetanulls of cyclic curves of small genus, Albanian J. Math., vol. 1, Nr. 4, 2007, 265-282.
- T. Shaska, Q. Wang, On the automorphism groups of AG-codes based on $C_{ab}$ curves, Serdica J. Computing, vol.1, Nr. 1, 2007, 193-206.
- D. Sevilla, T. Shaska, Hyperelliptic curves with reduced automorphism group A_5, Appl. Algebra Engrg. Comm. Comput., vol. 18, Nr. 1-2, 2007, pg. 3-20.
- T. Shaska, Subvarieties of the hyperelliptic moduli determined by prescribed group actions, Serdica Math. Journal, No. 4, 355-374, 2006.
- J. Gutierrez, T. Shaska, Hyperelliptic curves with extra involutions, London Math. Soc. J. of Comp. Math., 8, (2005), 102-115.
- T. Shaska, Some special families of hyperelliptic curves, J. Algebra Appl., 3 (2004), no. 1, 75--89.
- K. Magaard, T. Shaska, S. Shpectorov, H. Voelklein, The locus of curves with prescribed automorphism group, Communications in arithmetic fundamental groups (Kyoto, 1999/2001). Sūrikaisekikenkyūsho Kōkyūroku, No. 1267 (2002), 112–141.
- T. Shaska, Genus 2 fields with degree 3 elliptic subfields, Forum Math. 16 (2004), no. 2, 263 -- 280.
- T. Shaska, Curves of genus 2 with (n,n)-decomposable Jacobians, J. Symbolic Comput. 31 (2001), no. 5,603–617.

- T. Shaska, Reduction of superelliptic Riemann surfaces Contemporary Math, 2021 (to appear).
- G. Frey and T. Shaska, Curves, Jacobians, and Cryptography Contemporary Math. vol. 724, AMS (2019), pg. 279-345.
- A. Broughton, A. Wootton, T. Shaska; On automorphisms of algebraic curves Contemporary Math. vol. 724, AMS (2019), pg. 175-212.
- Jorgo Mandili and Tony Shaska, Computing heights on weighted projective spaces Contemporary Math. vol. 724, AMS (2019), pg. 149-160.
- Shuichi Otake, Tony Shaska, On the discriminant of a certain quadrinomials Contemporary Math. vol. 724, AMS (2019), pg. 55-72.
- D. Joyner, T. Shaska, Self-inversive polynomials, curves, and codes Contemporary Math., AMS, (2018), vol. 703, pg. 189-208.
- L. Beshaj, R. Hidalgo, A. Malmendier, S. Kruk, S. Quispe, T. Shaska, Rational points on the moduli space of genus two, Contemporary Math., AMS, (2018), vol. 703, pg. 83-115.
- R. Hidalgo, T. Shaska, On the field of moduli of superelliptic curves Contemporary Math., AMS, (2018), vol. 703, pg. 47-62.
- L. Beshaj, A. Elezi, T. Shaska, Theta functions of superelliptic curves , NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, 2015.
- A. Elezi and T. Shaska, Weight distributions, zeta functions and Riemann hypothesis for linear and algebraic geometry codes,, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, 2015.
- T. Shaska, C. Shor, Weierstrass points of superelliptic curves, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, 2015.
- L. Beshaj, T. Shaska, E. Zhupa, The case for superelliptic curves NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, 2015.
- L. Beshaj, T. Shaska, C. Shor, On Jacobians of curves with superelliptic components, Contemporary Math, Vol 629. pg. 3-15.
- M. Izquierdo and T. Shaska, Cyclic curves and their automorphisms , NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, 2015. (with M. Izquierdo)
- L. Beshaj and T. Shaska, Heights on algebraic curves , NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, 2015.
- L. Beshaj and T. Shaska, Decomposition of some Jacobian varieties of dimension 3 , Artificial Intelligence and Symbolic Computation, LNCS vol. 8884, 193-204.
- L. Beshaj and T. Shaska, The arithmetic of genus 2 curves , NATO ASI, Croatia 2010, ISO Press.
- T. Shaska and G. Wijesiri, Theta functions and algebraic curves with automorphisms , New Challenges in digital communications, NATO Advanced Study Institute, 2009, pg. 193-237.
- T. Shaska, S. Zheng, A Maple package for hyperelliptic curves , Maple Conference 2005, 399-408.
- J. Gutierrez, T. Shaska, D. Sevilla, Hyperelliptic curves of genus 3 and their automorphisms , Lect. Notes Comp., vol 13. (2005), 109--123.
- T. Shaska and C. Shor, Codes over $F_{p^2}$ and $F_p \times F_p$, Hermitian lattices, and corresponding theta functions Advances in Coding Theory and Cryptology, vol 3. (2007), pg. 70-80.
- V. Krishnamoorthy, T. Shaska, H. Voelklein, Invariants of binary forms , Dev. in Math., vol 12, pg.101-122, Springer, 2004.
- T. Shaska, Genus 2 curves covering elliptic curves, a computational approach , Lect. Notes in Comp, vol 13. (2005), 151-195.
- A. Bialostocki, T. Shaska, Galois group of prime degree polynomials with non-real roots , Lect. Notes in Computing, 13, 2005, 243--255.
- T. Shaska, Computational algebra and algebraic curves, ACM, SIGSAM Bulletin, Comm. Comp. Alg.,vol. 37, No. 4,117-124, 2003.
- T. Shaska, J. Thompson, On the generic curve of genus 3 , Contemporary. Math., vol. 369, pg. 233-244, AMS, 2005.
- T. Shaska, Determining the automorphism group of a hyperelliptic curve , ISSAC 05, 248--254, ACM, New York, 2003.
- T. Shaska, Computational Aspects of Hyperelliptic Curves , Lecture Notes Ser. Comput., 10, 248--257, World Sci. Publishing, River Edge, NJ.
- T. Shaska, Genus 2 curves with $(3,3)$-split Jacobian and large automorphism group. Algorithmic number theory (Sydney, 2002), 205--218, Lecture Notes in Comput. Sci., 2369, Springer, Berlin, 2002.
- T. Shaska and H. Voelklein, Elliptic subfields and automorphisms of genus 2 function fields , Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000),703--723, Springer, Berlin, 2004.

- G. Hiss and T. Shaska Kay Magaard (1962--2018), Special issue in honor of Kay Magaard, Albanian J. Math. Vol. 12, (2018), no. 1, 33-35.
- B. Shaska, T. Shaska, Mësimdhënia e matematikës nëpërmjet problemeve klasike, Albanian J. Math., vol. 10, (2016), no. 1, 47-80.
- T. Shaska, Computational algebraic geometry J. Symbolic Comput. 57 (2013), 1–2.
- T. Shaska, Computational algebraic geometry and its applications Appl. Algebra Engrg. Comm. Comput. 24 (2013), no. 5, 309–311.
- T. Shaska, Quantum codes from algebraic curves with automorphisms. Condensed Matter Physics, 2008, Vol. 11, No 2 (54), 383-396.
- T. Shaska, M. Qarri Algebraic aspects of digital communications. Albanian J. Math. 2 (2008), no. 3, 141–144.
- A. Elezi, T. Shaska, Special issue on algebra and computational algebraic geometry Albanian J. Math. 1 (2007), no. 4, 175–177.
- Curves of genus two covering elliptic curves. Thesis (Ph.D.)–University of Florida. 2001. 72 pp. ISBN: 978-0493-20012-5